
J .  Fluid Mech. (1994), 001. 219, pp .  211-237 

Copyright 0 1994 Cambridge University Press 
217 

A numerical study of the vorticity field generated 
by the baroclinic effect due to the propagation of a 

planar pressure wave through a cylindrical 
premixed laminar flame 

By G. A. BATLEY‘.’, A. C. McINTOSH’, J. BRINDLEY’ 
A N D  S. A. E. G. FALLE’ 

Department of Fuel and Energy, Leeds University, Leeds LS2 9JT, UK 

Department of Applied Mathematics, Leeds University. Leeds LS2 9JT, UK 

(Received 12 November 1993 and in revised form 22 June 1994) 

The importance of vorticity production in combustion systems has been highlighted 
previously by several authors (Markstein 1964; Picone et al. 1984). The consequent 
distortion and enlargement of flame surfaces can lead to substantial enhancement of 
the burning rate which may be beneficial or disastrous depending on the physical 
context. We describe the results of numerical simulations of an experimental 
configuration similar to that described by Scarinci & Thomas (1992), who examined 
the effect of initially planar pressure signals on two-dimensional flame balls. The flame 
ball is here set-up from ignition using a code, based on the second-order Godunov 
scheme described by Falle (1991). A simple Arrhenius reaction scheme is adopted in 
modelling a unimolecular decomposition. As in previous papers (Batley et al. 1993 a, h) 
the thermal conductivity is assumed to vary linearly with temperature, and the Lewis 
and Prandtl numbers are taken as unity. A short time after ignition, when the flame ball 
has reached a radius of approximately 2 cm, a very short-lengthscale pressure step 
disturbance is introduced, propagating towards the combustion region. As the signal 
crosses the flame, the interaction of the sharp, misaligned pressure and density 
gradients, creates a strong vorticity field. The resulting roll-up of the flame eventually 
divides it into two smaller rotating reacting regions. In order to gauge the effect of the 
chemical reaction and in particular the viscous diffusion on the evolution of the 
vorticity field, the results are compared with analogous solutions of the Euler 
equations. 

1. Introduction 
The importance of the baroclinic effect in combustion systems has been highlighted 

previously in both experimental and computational studies. Markstein (1964) described 
an experiment involving the interaction of an initially planar shock with a spherical 
flame bubble in a shock tube which was closed at one end. The photographs of this 
interaction showed clearly the onset of rotational gaseous motion induced by the first 
passage of the shock. As the subsequent reflected disturbance crossed the flame, 
increasing the strength of the vorticity field, smaller-scale eddies were produced, which 
eventually lead to the turbulent breakup of the flame and so to a massive increase in 
the overall burning rate. Using both numerical and analytical techniques, Picone et al. 
( I  984) studied a similar experimental set-up involving the interaction of a planar shock 
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with a cylindrically symmetric flame ball. By modelling the flame ball as a region of 
density inhomogeneity with a prescribed spatial profile, these authors were able to 
derive an approximate analytical expression for the strength of the two vortices 
produced by the first passage of the shock by ignoring variations in the shock strength 
and geometry. They then used a code, based on FAST2D, described by Book et at. 
(1981), to solve the Euler equations, and were able to reproduce accurate 
representations of the early part of the interaction, dominated by gasdynamic effects. 

In this paper, a single passage of an ultra-short-lengthscale pressure step across an 
expanding flame front is considered (cf. Scarinci & Thomas 1992). A second-order 
Godunov scheme is used to solve the equations governing the behaviour of a reacting 
fluid with unit Lewis and Schmidt numbers. The code used is based on that described 
by Falle (1991). A unimolecular decomposition reaction whose rate has an Arrhenius 
temperature dependence is considered, and the thermal conductivity is assumed to be 
proportional to temperature. 

The first aim of the numerical study is to model the ignition of the gas via a slow 
deposition of energy within a small cylindrical region. Using a simplified version of the 
code, designed for cylindrical symmetry, the energy input required for initiation is 
calculated, and the propagation of the laminar flame is modelled using a minimum of 
computing time. The data describing the state of the flame at a given time after ignition, 
generated by the one-dimensional code, is then interpolated into a two-dimensional 
Cartesian grid. A propagating pressure disturbance with fractional amplitude 0.3 
compared to ambient, and lengthscale 4 mm is set up at a sufficient distance from the 
flame ball for the initial evolution of both to be considered mutually independent. 
Initially, this pressure disturbance therefore propagates uniformly towards the flame 
ball. As the signal traverses the flame region, the baroclinic effect, due to the 
misalignment of the pressure gradient with the density gradient associated with the 
flame, produces a significant vorticity field. This vorticity field causes the flame front 
to curl in on itself in a manner similar to that of the behaviour of the cylindrical vortex 
sheets examined by Rottman & Stansby (1993). 

Tn order to gauge the importance of the reaction and diffusion processes, the results 
are compared with the evolution of the same density inhomogeneity after the passage 
of the same pressure disturbance, with (i) the reaction term set to zero and (ii) both the 
reaction and diffusion (thermal, species and viscous) terms set to zero. (Note that the 
particular importance of viscosity in determining the behaviour of strong vorticity 
fields has been highlighted previously by several authors, including Cloutman & 
Wehner 1992 and Rottman & Stansby 1993.) 

A relatively weakly reaction mixture is assumed, giving a slow laminar flame speed 
and a broad reaction zone (z 4 mm). Because the Mach number of the flame is so low 
(of the order lo-'), the time taken for the pressure disturbance to traverse the preheat 
zone, and in fact the entire flame ball, is far too short for the combustion processes to 
contribute significantly to the flow during this stage of the interaction, unless 
temperature increases associated with the pressure signal are sufficient to cause 
exponential burning rate changes (cf. McIntosh 1989, 1991, 1993; McIntosh, Batley 
& Brindley 1993). The latter of these two papers, together with the follow up work, 
Batley, McIntosh & Brindley (1993 a), describes detailed numerical investigations into 
interactions between short-lengthscale planar pressure signals with planar flames in 
one space dimension. In particular, the effect of the flame's density distribution on the 
pressure signal is examined in detail and it is demonstrated that the amplitude increases 
if the signal approaches from the equilibrium side, and decreases if it approaches from 
the preheat side. It is further described in Batley et al. (1993~) that the flame undergoes 
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a sharp burning rate increase after a positive pressure step before diffusing back to a 
new steady state. However, for the fractional increase in pressure in the current work 
(0.3), the effects of this increase in burning rate, as well as those of the differential 
convection of the flame with the disturbance, are quite small, and can be neglected in 
order to provide a simple mathematical model of the interaction. A coarse 
approximation to the contribution of the baroclinic effect can be made by further 
neglecting the variation in the strength and geometry of the incident signal. 

An approximate form for the vorticity field generated by the interaction can then be 
found, simply by imposing the uniformly propagating pressure signal on the density 
field of the flame. This approach has been used previously by Scarinci (1990), who 
derived expressions for the total circulation generated by the interaction of a planar 
shock with both a cylindrical and a spherical flame ball. After the initial interaction, 
the cylindrical flame front can reasonably be modelled as a thin annulus on which the 
vortex strength varies sinusoidally. This set-up has been examined previously by 
Krasny (1  986b) as a model of the inviscid motion of a cylinder of fluid released from 
rest in a cross-flow. In that paper, the author succeeded in solving numerically the 
equations of motion for such a vortex sheet. However, the solutions presented were 
only valid over very short times leading up to the formation of a pair of singularities. 
There has recently been greater success in solving the simplified equations derived for 
the case where the gases on either side of the vortex sheet have the same density (see 
for example Rottman, Simpson & Stansby 1987; Rottman & Stansby 1993). The 
results presented here confirm that the initial behaviour of the cylindrical vortex sheet 
separating gases with differing densities is qualitatively similar to that in the case where 
the gases have the same density. 

The major difference between the current study and both the vortex sheet studies 
described above and the theoretical and numerical studies of the evolution of vorticity 
fields in combustion systems, is that here the effects of the chemical reaction and of 
thermal and mass diffusion are included. Although the reactivity of the mixture 
considered here is very low, it is demonstrated that, within a few milliseconds of the 
initial interaction, the combustion processes begin to cause the disintegration of the 
small-scale coiled reaction front structure. 

2. Governing equations 

vector of conserved variables U given by 
The two-dimensional reactive Navier-Stokes equations are solved in terms of the 

where p is the gas density, u = (ux, uy) the gas velocity vector, e the total kinetic and 
thermal energy per unit volume and C the fuel mass fraction. The full set of governing 
equations is then given by 

where I;, and 4 are the usual hyperbolic flux vectors given by 
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and 

F,, and FDy are the diffusive flux vectors 

and 

T being the usual stress tensor 

and the source vector S includes the contribution of the chemical reaction to the energy 
and species distributions. S may be written 

In (2.3)-(2.8) p is the gas pressure, h the thermal conductivity, D the relative species 
diffusion coefficient, ,LL the coefficient of dynamic viscosity, Q the specific heat release, 
EA the release activation energy, 8 is the gas constant, and T the gas temperature. 

In this work it is assumed that 
A K T, (2.9) 

and that the Lewis and Prandtl numbers, defining the relative importance of thermal, 
mass and viscous diffusion, are both equal to unity. 



Shock-flume interactions 22 1 

3. Numerical scheme 
The code used for this work is second-order accuratc in both space and time. The 

Godunov scheme employed divides the (x, y)-plane into grid cells with the variable 
values calculated at the cell centroids. A nonlinear Riemann solver is then used to 
calculate the hyperbolic fluxes at the cell boundaries. The first-order time step takes the 
distributions within each cell to be uniform. The second-order time step then gives 
second-order space accuracy by using adjacent mid-cell values to calculate the flow- 
quantity gradients. In order to maintain monotonicity, an averaging function is 
employed in the regions with large second derivatives to reduce the accuracy of the 
scheme to first order. Diffusive fluxes are then also calculated at the cell boundaries and 
the reaction terms evaluated using cell-centroid values. The details of the hyperbolic 
part of the numerical scheme are described by Falle (1991) for cylindrical geometry. 

The flame is initiated by a slow energy input within a small cylindrical region with 
radius 1.5 mm. It is assumed that ignition takes place a sufficient distance from any 
solid boundary for reflected pressure signals to be insignificant. This assumption allows 
the use of a one-dimensional scheme, designed for cylindrical symmetry, in examining 
the ignition phase of this simulation. There are obvious practical advantages in being 
able to set up the propagating flame ball in one space dimension. Clearly the CPU time 
required for integrations at the same resolution is minimal in one dimension compared 
with two, and this is particularly important since the ignition phase can take up to 
0.05-0.1 s. However, setting up the propagating cylindrical flame requires higher 
resolution in two dimensions than in one. This is because in two Cartesian dimensions 
a small number of data points within the ignition region results in a propagating flame 
whose structure is grid dependent, in that the reaction zone tends to become square as 
the resolution is decreased. If, to overcome this problem, the energy is deposited within 
a larger region, the reduction in thermal diffusion means that the central temperature 
reaches much higher values once the reaction has begun, and takes much longer to 
diffuse back to the adiabatic burnt gas temperature. Because of the Arrhenius reaction 
term: these high temperatures mean that an exceedingly short time step is required in 
order to maintain accuracy, and in particular to avoid the unphysical occurrence of a 
locally negative fuel mass fraction. Thus modelling the ignition phase in two space 
dimensions would require a massive amount of computing time, and the one- 
dimensional scheme is therefore used for this part of the simulation. 

The spatial and temporal resolution required is determined by the need to capture 
the various important physical processes. 

3.1. Spatial resolution 
The spatial resolution used in the simulations is determined by the need to resolve the 
sharply peaked Arrhenius reaction term, whose contribution to the energy and species 
equations must be calculated accurately. Here the grid size is chosen so that there are 
roughly 10 data points within the 90 YO reaction rate thickness of the propagating flame 
ball. Steady planar flame characteristics are taken as a rough guide to the thickness of 
the cylindrical flame. (Note that as the radius of the propagating flame increases, 
curvature effects become less significant, and the planar approximation becomes more 
accurate.) 

unburnt gas temperature : 
The combusion parameters chosen for this work are given by: 

burnt gas temperature : I; = 300 K, 
= 1500K, 

8 FLM 279 
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ratio of T, to q: 

dimensionless activation energy E,/% : 

reaction rate constant : 

Lewis number: 

Schmidt number : 

thermal diffusion coefficient : 

density : 

G .  A .  Batley, A .  C. Mclntosh, J .  Brindley and S.  A .  E. G .  Falle 

T,, = 0.2, 

0 = 10, 

k ,  = 5 x loT s-1, 

Dupu cp14L = 1, 

P?L/f4dDu = 1: 

A, = 0.1 J m-' s-' K-', 

p u  = 1.17 kgm-3, 

and therefore 

The subscripts M and b refer to unburnt and burnt values, respectively, and cp is the 
specific heat capacity. For this set of values, for a steadily propagating planar flame 
involving a single unimolecular decomposition reaction with thermal conductivity 
proportional to temperature and Lewis number equal to unity, high-activation-energy 
asymptotic analysis yields a flame speed of 7.75 cm s-l and a 90% reaction zone 
thickness of about 4 mm. (See for example Clarke & McIntosh 1984 for a description 
of the planar flame model.) Thus in this work the grid size used is 0.4 mm. 

Of course, the spatial resolution used also plays an important role in the rest of the 
simulation. As mentioned earlier, the ignition region has a spatial scale of 1.5 mm. 
Although the number of grid points within this region is very small, use of the one- 
dimensional code means that this number is sufficient, since precise analysis of ignition 
is not the focus of interest here. The crucial phase of the simulation is the evolution of 
the flame ball after the passage of the pressure signal. As indicated by previous studies 
of the roll-up of cylindrical vortex sheets (e.g. Rottman & Stansby 1993), the rate of 
progression towards small-scale structures depends on the amount of viscosity. In this 
paper, comparisons are made between solutions of the equations with and without 
viscosity, and the point at which the grid becomes inadequate is clearly shown in the 
latter case. 

(Consideration must also be given to the thickness of the initial boundary layer. 
Taking the radius of the flame ball and the gas velocity behind the pressure disturbance 
as typical flow values gives a Reynolds number of the order 103-104. The initial viscous 
boundary-layer thickness, which is proportional to is therefore of the order of 
0.1 mm, and so cannot be fully resolved using the current grid size of 0.4 mm. 
However, comparison of results with analogous early-time solutions of the Euler 
equations indicate that prediction of the behaviour of the flame front is at least 
qualitatively correct.) 

3.2. Temporal resolution 
As described by Falle (1991), the stability of the hyperbolic part of the numerical 
scheme requires a time step (A t )  which obeys the usual Courant restriction 

(3.11) 
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where u is the velocity vector and a is the local sound speed. In this work the Courant 
number is set equal to 0.4, which leads to time steps of the order lo-' s; this is a much 
tighter restriction than that imposed by the diffusion terms. However, in order to 
maintain accuracy, and in particular to avoid the occurrence of negative values of C 
(the fuel mass fraction), an extra restriction is imposed on the size of the time step. This 
condition is given by 

(3.12) 

where 8 is a positive number which is less than unity, giving the maximum allowable 
fractional change in fuel concentration due to the chemical reaction within a single time 
step. In the simulations described here, the value of 6 is set to 0.2. 

4. Ignition 
The cylindrical flame is initiated by a slow energy input within a small central region 

with radius of the order of 1.5 mm. The time taken for the energy to be deposited is 
much longer than the timescale typifying the passage of an acoustic signal across the 
ignition region. Thus the vast majority of the deposited energy is carried out of the 
central regions in the form of kinetic energy such that the reactants flow radially 
outward, driven by a small but significant pressure gradient. This outflow of gas leads 
to decreasing density within the ignition region, and thus, with the pressure effectively 
constant, the overall effect is that the temperature increases inversely with the density. 
It is possible to obtain an approximate value for the central temperature achieved for 
a given energy input by neglecting thermal and viscous diffusion effects. Without these 
terms the energy equation can be written 

D l n  T - ( y -  1) Dlnp+(y- l)S(r, t)  
1 (4.1) 

Dt Y Dt P 

where 
D 2  
- = - + u * v ,  
Dt at 

S(r, t )  is the rate of energy input, and y the ratio of specific heats. 

where u = 0, is simply given by 
If pressure variations are assumed negligible, then the temperature at the origin, 

The energy is assumed to be deposited in a small expanding cylindrical region at a rate 
which increases to a peak and then dies away with time. The exact form of the source 
term is given by 

(4.4) 

where ~ ( f )  = A,  e-kt(t-td2, (4.5) 
and k,(t) = k,,(l+at,/(t+t,)). (4.6) 
(Thus the approach is similar to that described by Oran & Boris 1979.) Here t ,  is 
the time of maximum power input, and a defines the evolution of the spatial scale 
of the energy input region. If eckt; is small, it follows that 

T(0, t + m) = T(0,O) exp ("t:,.") (4-7) 
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Since ignition requires a temperature increase by a factor l/q1, the value of A, 
required is 

In reality, diffusive losses mean that the final temperature achieved will be significantly 
lower than the above analysis would indicate, but the time taken for the one- 
dimensional code to run is very low, making calculation of a suitable value for A ,  using 
the above value as a first guess a simple matter. 

5. Two-dimensional interaction 
The one-dimensional ignition code is allowed to run until the central temperature 

peak has died away, so that the temperature of the burnt gas is approximately uniform 
and the flame has reached the required radius. The data is then read into a two- 
dimensional Cartesian grid to be used as the initial condition for the pressure 
interaction. In order to maintain second-order accuracy, the distance between the 
centroids of corresponding Cartesian and cylindrical grid cells is taken into account. 
A planar pressure disturbance is next introduced, propagating towards the flame ball 
in the unburnt region. This disturbance is set up by choosing the associated velocity 
distribution so that the Riemann variable corresponding to the direction opposite to 
that of the propagation of the disturbance is unchanged (see for example Crighton 
1986 or Whitham 1974). Hence a pressure step function of the form 

P k Y )  = P,(l +PH(.Y--C’,)C1 --ech2 [k(.Y-y,)l)), 

p(x, v) = P,( 1 + PH(y -yo) I1 - Sech2 [k (y  -y,,)lP’, 

(5.1) 

(5.2) 

is introduced, with an associated adiabatic density field given by 

and a velocity perturbation given by 

Note that, in the above set, /i’ defines the fractional amplitude of the pressure signal, 
which in this paper is equal to 0.3. In order to reduce the required spatial domain of 
integration, the frame of reference chosen for the two-dimensional grid moves at 
uniform velocity with the gas behind the pressure disturbance. 

6. Results and discussion 

6.1. Ignition 
Figure 1 shows the evolution of the temperature and fuel mass fraction at the centre 
of the external energy input for various amplitudes (AJ. The numbered lines show the 
results for increasing amplitudes of energy input. The first amplitude is chosen so that 
the central temperature would reach a value just less than the adiabatic burnt gas 
temperature of the steady flame in the absence of diffusive and acoustic heat losses. The 
amplitude is then increased by one twentieth of this value for successive integrations. 
The central temperature estimates for each amplitude are given in the figure. 

(Note that the ambient gas temperature (T,) is 300 K, and T,, = 0.2 which gives 
= 1500 K.) The values of the other parameters describing the energy input, which 
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FIGURE I .  The evolution of the central temperature and fuel concentration during various slow 
energy inputs. Curve 1 : A ,  = 4200 J m-3 s-l; 2, A,  = 4410 J m-3 s - l ;  3. A,  = 4620 J m-3 s-l; 4, 
A, = 4830 J m-3 s-l; 5, A ,  = 5040 J m-3 s-l. 

determine the importance of diffusive and acoustic losses, and the time taken for the 
flame to settle down after ignition, are given by 

a = 0.2, 
t ,  = 5 x 10-4 s, 

time half-thickness (= (In (Z)/kJ’/’) = 2.5 x s, 
and final radial half-thickness (= (1n(2)/kro)’/‘) = 1.5 mm 

Pressure fluctuations induced by energy inputs at the rates determined by this set of 
parameters are limited to fractional amplitudes of the order of of ambient, so 
that the energy losses associated with propagating acoustic waves are small. The major 
heat loss during ignition is therefore due to thermal diffusion. Figure 2 shows the flame 
at a time 0.085 s after ignition with ignition characteristics corresponding to line 4. By 
this time the central temperature peak has died away, and since the radius of the flame 
is now 2 cm, which is quite large compared with the flame thickness, curvature effects 
on the flame structure are small. 

6.2. Pressure-flame interaction 

6.2.1. Comparison of early stages with vortex-sheet evolution 
The evolution of the density, vorticity, fuel mass fraction and reaction rate 

distributions during the early stages of the interaction are shown in figures 3 and 4. 
Successive time plots are shown at 0.25 ms intervals. (Note that in figures 3 and 4 as 
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FIGURE 2. The temperature, radial velocity, fuel mass fraction and reaction rate distributions 
within the flame, 0.085 s after initiation. 

well as figures 6 and 7, the range of values covered by the associated scale is determined 
by the range of values present within each plot.) Figures 3 (a)-3 (d) show the full extent 
of the integration domain. The initial location of the flame ball is shown clearly in the 
density, fuel mass fraction and reaction rate plots (the left-hand plots of figures 
3 ( a t 3  (d) respectively). The initial density distribution also shows the location of the 
imposed pressure signal within the unburnt region above the flame. 

In the central plots of figures 3(a)-3(d) ( t  = 0.08525 s), the flame ball has moved 
slightly in the direction opposite to that of the pressure signal propagation. This is 
because, in order to reduce the size of the spatial domain modelled, the frame of 
reference is moving in the same direction as the shock, at the initial speed of the gas 
immediately behind it. These latter plots of the early part of the interaction also show 
a slight deformation of the flame by the time the pressure signal has passed through the 
combustion region. The increase in reaction rate shown in the second plot of figure 3 (d) 
is due to the adiabatic temperature rise associated with the pressure step, and the 
resultant narrowing of the reaction zone at the front end of the flame ball has been 
previously commented on by Batley (1993) and Batley, McIntosh & Brindley 
(1993a, b). 

A significant annular vorticity field is seen to have been induced within the flame by 
the baroclinic impulse (central plot of figure 3 b). The continuing evolution, which is 
governed largely by this vorticity field, shows that within 1 ms of the start of the 
interaction ( t  = 0.086 s, shown in the top central plots of figures 4(a)-4(d)), the 
rotational velocity field has drawn the cold unburnt gas from the region immediately 
above the flame right through the combustion region, splitting it into two distinct 
components. Within each of these components, the thick vorticity sheet continues to 
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roll up, and after another millisecond ( t  = 0.087 s, shown in the bottom right hand 
plots of figures 4(at4(d))  a spiral structure, similar to that found by Rottman & 
Stansby (1993), is apparent. The behaviour of the reaction zone (figure 4(d)) broadly 
follows the behaviour of the vortex sheet (figure 4b), continuing to coil in on itself, thus 
mixing the cold unburnt fuel from outside the original flame ball with the hot burnt gas 
within. 

Using a simple model which includes only the dominant physical effects, a rough 
analytical form for the initial vorticity field can be derived. In this calculation, the 
following approximations are included : 

(i) The time taken for the pressure signal to traverse the flame region is assumed to 
be sufficiently short for the radial propagation of the flame front during this time to be 
neglected. 

(ii) Variations in the amplitude and geometry of the pressure signal are neglected. 
(iii) Distortion of the flame due to differential convection with the flow behind the 

pressure signal is neglected, so that the flame is treated as if its entire structure is given 
a uniform and instantaneous linear impulse and is therefore initially uniformly 
convected at the initial speed of the gas behind the pressure signal. 

(It is also assumed that the passage of the pressure signal is sufficiently rapid for the 
baroclinic impulse over the entire flame region to be considered instantaneous.) 

The flame can then be modelled as a cylindrically symmetric density distribution 
which instantaneously undergoes simultaneous linear and baroclinic impulses. By then 
following the approach of Scarinci (1990). and integrating the baroclinic term 
V(l/p) x Vp, it can be shown that the total circulation generated (4) is equal to 

with the circulation strength per unit azimuthal angle (V(q)) being equal to 

where is the acute angle between the position vector r and the y-axis, the direction 
of which is taken to be opposite to that of the motion of the pressure signal. Here p c  
and p- are the gas pressures behind and ahead of the imposed disturbance, and co is 
the speed of sound in the unburnt gas. 

The evolution of vortex sheets embedded in ideal flows has received much attention 
in recent years. In particular, a large number of papers have described numerical 
techniques based on the point-vortex method, originally suggested by Rosenhead 
(1931). By modelling an inviscid sheet as a collection of point vortices, Rosenhead was 
able to derive an evolution equation for the locus of these points on the basis of 
constant vortex strength. However, as described by, amongst others, Rottman et al. 
(1987), this technique suffers from fundamental difficulties arising from the 
susceptibility of these systems to short-lengthscale Helmholtz instabilities. A more 
fundamental problem is that these inviscid models predict the formation of a 
singularity at a critical time t,. Detailed descriptions of vortex methods and in 
particular the numerical difficulties associated with point-vortex methods are given by 
Meiron, Baker & Orszag (1982), Krasny (1986a), Rottman et al. (1987) and Rottman 
& Stansby (1993). 

Of greatest relevance to the current study are the latter two papers, examining the 
evolution of a thin vortex sheet surrounding a cylinder of fluid released from rest in a 
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cross-flow. Rottman et al. (1987) used the point-vortex method to derive solutions up 
to the critical time t ,  for three different ratios of internal to external gas densities. In 
order to examine the continuing evolution of a cylindrical vortex sheet, Rottman & 
Stansby (1993) solve numerically the ‘&equation’, originally given by Krasny (19864 
which governs the evolution of vortex sheets embedded in a viscous incompressible 
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FIGURE 3. The initial evolution, generated by the interaction between a positive pressure step with 
fractional amplitude 0.3 and a cylindrical flame ball of radius 2 cm, of (a) the density distribution; 
(h) the vorticity field; (c) the fuel mass fraction distribution; and ( d )  the reaction rate distribution. 

fluid whose density distribution is uniform. Thus they examine the evolution of a 
vortex sheet, whose locus is given in the complex plane by 

z = ro exp (iq), (6.3) 

V(i7) = -2U0vOsin7. (6.4) 

and whose vortex strength per unit azimuthal angle is given by 
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Krasny’s ‘&equation’ is given for a closed vortex sheet by 

C7t 

t=0.087 s 

f=0.08625 s 

t=0.087 s 

where the units of distance and time are given respectively by r,, and r,,/U,,. Note that 
in these equations, the only effect of the U,, term is a linear transformation of the vortex 
sheet, and so the important effects can be captured by setting this term to zero and 
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FIWRE 4. The continuing evolution, after the interaction between a positive pressure step with 
fractional amplitude 0.3 and a cylindrical flame ball of radius 2 cm, of (a) thc density distribution; 
(b) the vorticity distribution; (c) the fuel-mass fraction distribution; and (d) the reaction rate 
distribution. 

redefining the vortex-sheet strength separately. For the current set of parameters, 
equation (6.2) for the circulation strength per unit azimuthal angle gives 

corresponding to U,, = 175 m SKI. (Here, 7 = 0 corresponds to the direction opposite to 
the initial direction of motion of the shock.) This then gives the equivalent length and 
time scales as 2 cm and s. A non-zero value of rE is included in order to simulate 

V(Y/) x - 7 sin 9, (6.6) 
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redefining the vortex-sheet strength separately. For the current set of parameters, 
equation (6.2) for the circulation strength per unit azimuthal angle gives 

corresponding to U,, = 175 m SKI. (Here, 7 = 0 corresponds to the direction opposite to 
the initial direction of motion of the shock.) This then gives the equivalent length and 
time scales as 2 cm and s. A non-zero value of rE is included in order to simulate 

V(Y/) x - 7 sin 9, (6.6) 
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0 
0 

0 t =0.25 ins 

FIGURE 5. The evolution of a cylindrical vortex sheet released from rest at / = 0. ( N  = 128) 
(a) S = 1.1, (b) S = 1.3, ( c )  S = 1.5. 

the effects of viscosity in resisting both the formation of a singularity at the critical time 
t,, and the eventual rolling up of the vortex sheet into ever tighter coils. The amount 
of viscosity increases with the value of 6, and the overall effect is to decrease the rate 
of vortex-sheet roll-up. It is therefore likely that. although the results presented by 
Rottman et al. show much more rapid evolution than has been found in the numerical 
experiment described here, there exists an ideal value of S for which the roll-up rate 
matches that found in this case. Of course, true comparisons will only be possible with 
the development of vortex methods to include the difference between the internal and 
external gas densities. However, it is worth considering what value of S is required in 
the vortex-sheet formulation described in the above papers in order for the rate of roll- 
up to match the results of the direct numerical simulation described in the current 
paper. Figures 5(a)-5(c) show the results of numerical integrations of the vortex sheet 
'&equations' (6.5). In each case, 128 data points are used, and as in the study by 
Krasny (1986a), a fast Fourier transform technique has been adopted in order to 
eliminate the ' saw-tooth' numerical instability described by that author. The results 
presented are for S = 1.1, 6 = 1.3, and 8 = 1.5 respectively. These values represent 
much higher viscosities than were used by Rottman et al. (1993), but it seems that a 
value in this range is required to give good qualitative agreement with the behaviour 
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FIWRE 6. A comparison between the evolution of the density field predicted by the numerical 
solution of the full reactive-diffusive Navier-Stokes equations (top), the unreactive diffusive 
Navier-Stokes equations (middle) and the Euler equations (bottom). 

of the flame (cf. figure 3(a)  and the earliest time plot in figure 4n). Clearly, the vortex 
methods used here are incapable of predicting the behaviour of the flame with any 
rigour, since they have been developed to describe flows with uniform density. 
However, it has been shown here that it is possible to achieve approximate matching 
of the vortex-sheet roll-up timescale with that of the initial distortion of the flame front 
by choosing an appropriate value of the viscosity parameter 8. 

6.2.2. Effects of the reaction-difusion system 
The results of the direct numerical simulation have clearly shown the creation of a 

strong vorticity field through the baroclinic effect caused by the of non-alignment of 
pressure and density gradients. In the previous section, comparisons with existing 
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vortex methods have shown qualitative agreement with the evolution of a cylindrical 
vortex sheet embedded in an ideal flow over early times. As described by the authors 
mentioned, the inclusion of viscous diffusion is crucial in obtaining meaningful results. 
Another important point of interest is the interaction between the vortici ty field and 
the continuing evolution of the flame ball. The demonstration by Markstein (1 964) that 
the double passage of a pressure signal across a flame ball could effect the 
transformation to turbulent burning clearly showed the importance of understanding 
the highly complex nonlinear interaction between vorticity fields and combustion 
systems. Although the experimental set-up modelled here involves only a single 
shock-flame interaction, and the reactivity of the mixture is very low (typified by a 
planar flame speed of less than 0.1 m s-l), the reaction-diffusion processes do begin to 
affect the flow, even within a few milliseconds of the passage of the pressure 
disturbance across the flame. Figures 6 and 7 show comparisons between the 
continuing evolution of the flame ball under the influence of the baroclinically induced 
vorticity field (top), and the results of analogous numerical simulations of (i) an 
interaction between the same pressure signal and the same diffusive density distribution, 
with zero reaction rate (middle); and (ii) an interaction between the same pressure 
signal and the same initial density distribution with zero reaction rate and no diffusion 
(bottom). 

As the numerical simulation proceeds, the cold unburnt gas from above is drawn 
right through the flame ball, splitting it into two separate components (see figure 6). 
within both components, each plot of figure 6 shows that the density distribution 
departs from the regular coil structure, although the reasons behind this part of the 
evolution are different in each of the three cases. The top three plots, showing the 
solution of the full equations, reveal the effect of the continuing chemical reaction. The 
unburnt gas drawn in from the exterior of the original flame ball is mixed with the hot 
burnt gas. As the cold gas is heated, it begins to burn, depositing more heat into the 
flow, which results in the tendency of the internal gas temperature to settle into a 
homogeneous distribution at around the adiabatic burnt gas temperature. This 
tendency is apparent in the rop right-hand plot of figure 6. In contrast, the solution of 
the unreactive Navier-Stokes equations (middle three plots of figure 6) shows that 
whilst the arms of the coil structure again tend to be thinned, because this is due to 
thermal and mass diffusion, the overall temperature of the gas is much lower (the 
density therefore being much higher). 

It has been stated by previous authors such as Krasny (1968a, h) that an inviscid 
vortex sheet will always continue to roll up ad injinitum, so that numerical simulations 
which employ finite-difference methods will always reach a point where the results 
become heavily grid-dependent. This point appears to have been reached in the 
solution of the Euler equations shown in the bottom middle plot of figure 6, as the 
regular structure disintegrates to form a less ordered distribution. This is because there 
is no physical process included in that model whereby the continuing evolution into 
tighter and tighter coils can be resisted. As the two separate components continue to 
evolve, the point is therefore reached at which the grid becomes inadequate to capture 
accurately the sharpest gradients. Of course, if the grid size were to be reduced, this 
point would only be reached after a longer period of time, but as stated by previous 
authors such as Cloutman & Wehner (1992), this breakdown point is always reached 
in finite-difference Eulerian flow simulations which include significant vorticity fields. 

Interesting effects arc also revealed by the corresponding vorticity fields shown in 
figure 7. Again the solution of the Euler equations (bottom three plots) results in a 
somewhat disordered distribution by the time of the final (right-hand) plot. 
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FIGIJRE 7. A comparison between the evolution of the vorticity field predicted by thc numerical 
solution of the full reactive-diffusive Navier -Stokes equations (top), the unrcactive diffusive 
Navier-Stokes equations (middle) and the Euler equations (bottom). 

Comparison of the magnitude of the vorticity field reveals that the inclusion of 
diffusion processes reduces the magnitude of the final vorticity field. and that, when the 
chemical reaction is included, the vortici ty field is further reduced. Clearly, dissipation 
of the vorticity field by viscous diffusion has been revealed. The extra reduction when 
the reaction term is included (note the higher vorticity values shown in the middle three 
plots compared with those in the top three plots) is due to the temperature dependence 
of the diffusion coefficients. (Without the chemical reaction, diffusive heat losses lead 
in turn to a reduction in the values of all of the diffusion coefficients.) 

The continuing evolution of the two separate components requires further 
investigation. It seems likely that there are two possible eventual outcomes of this 
experiment. If the reaction rate is sufficiently rapid (after the adiabatic increase in 



236 G. A.  Batley, A .  C. McIntosh, J.  Brindley and S .  A .  E. G. Falle 

temperature associated with the incident pressure signal), it is likely that the two 
components will continue to evolve into rotating flame balls. It is possible, however, 
that if the intrusion of cold gas is too rapid, then the final temperature within each 
component may be too low for significant combustion to be maintained, and this 
swamping of the flame ball may cause extinction. 

7. Concluding remarks 
The plots of the two-dimensional interactions show that, for this relatively low 

reactivity, the initial evolution of the flame front is dominated by the Eulerian part of 
the governing equations, the chemical and thermal energies being convected with the 
evolving vorticity field, and the flame ball is split into two components by the intrusion 
of the cold gas through the central regions. 

More meaningful modelling of this experiment using vortex methods clearly requires 
further development, including the development of a method to incorporate the 
propagation of the flame front during the roll-up of the vortex sheet. However, by 
choosing a very high value for the viscosity parameter 8, it has been possible to make 
qualitative comparisons between the behaviour of a vortex sheet and that of the 
annular vorticity field which is initially identified with the flame front, using vortex 
methods designed for uniform density fields. It would be interesting to investigate 
whether the same rough correspondence follows for pressure steps of any amplitude 
when the value of S is kept constant and only the strength of the vortex sheet is 
changed. 
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